If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32a^2+44a=0
a = 32; b = 44; c = 0;
Δ = b2-4ac
Δ = 442-4·32·0
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-44}{2*32}=\frac{-88}{64} =-1+3/8 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+44}{2*32}=\frac{0}{64} =0 $
| N2-4n-32=-10 | | -8=-7+f | | -5r=10 | | 16+4z=64 | | (8+8i)(8+8i)=0 | | 10/3+3c=5/2 | | 7=5=4x-3 | | 10/3+c=5/2 | | 2.8+5b=17.8 | | 7=4x-3+5 | | 4=v/3-6 | | -20=-4x=-6x | | X-0.12x=26400 | | 1/7s=3 | | 3x-11-x=7 | | X-0.5x=14250 | | 2(3v)=14 | | 2u+42=94 | | 18(-x-2)-4(+3x)=-14 | | 15n=5.50n+380 | | v+8=10 | | 24x-4x+6=10 | | 24+5p=-2(6-7p) | | 6^(3x+1)=30 | | 2/3x+1/6-1/2x-5=-3 | | y=34,000(0.85)^5 | | 24+5p=-2(6–7p) | | 47=12+5m | | 2.5(x)+2(x/2)=336 | | 4x+40=4x+10 | | 7(7n+1)=-40+2n | | 1/5r=-10 |